EML 2007

Préliminaire

On donne : $0,69 < \ln 2 < 0,70$. On considère l'application :

$$g:]0; +\infty[\rightarrow \mathbb{R}, \quad x \mapsto g(x) = x^2 + \ln x$$

- 1. Montrer que g est continue et strictement croissante sur $]0; +\infty[$ et déterminer les limites de g en 0 et en $+\infty$
- 2. Montrer que l'équation g(x) = 0, d'inconnue $x \in]0; +\infty[$, admet une solution et une seule. On note α l'unique solution de cette équation.
 - 3. Montrer: $\frac{1}{2} < \alpha < 1$

Partie A

On note $I = \left[\frac{1}{2}, 1\right]$ et on considère l'application :

$$f: I \to \mathbb{R}, \quad x \mapsto f(x) = x - \frac{1}{4}x^2 - \frac{1}{4}\ln x$$

- 1. a) Montrer que f est strictement croissante sur I.
 - b) Montrer: $\frac{1}{2} < f(\frac{1}{2}) < f(1) < 1$.
 - c) En déduire : $\forall x \in I$, $f(x) \in I$.
- 2. On considère la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et, pour tout $n\in\mathbb{N},\ u_{n+1}=f(u_n)$.
 - a) Calculer u_1
 - b) Montrer: $\forall n \in \mathbb{N}, u_n \in I$
 - c) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.
 - d) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge et que sa limite est le réel α .

Partie B

On considère l'application :

$$F: \mathbb{R}_{+}^{*} \times \mathbb{R} \to \mathbb{R}, \quad (x, y) \mapsto F(x, y) = x e^{y} + y \ln x$$

- 1. a) Montrer que F est de classe C^1 sur $\mathbb{R}_+^* \times \mathbb{R}$ et calculer les dérivées partielles premières de F en tout point (x, y) de $\mathbb{R}_+^* \times \mathbb{R}$.
 - b) Montrer que F admet un point critique et un seul que l'on exprimera à l'aide du nombre réel α .
- 2. Est-ce que F admet un extremum local?

F2v011 Page 1/1