Corrigé EML 2004 par Pierre Veuillez

On considère l'application $f: \mathbb{R} \to \mathbb{R}$ définie, pour tout $t \in \mathbb{R}$ par :

$$f\left(t\right) = \frac{2e^{t}}{\sqrt{1+t^{2}}}$$

1. f est dérivable sur \mathbb{R} et

$$f'(t) = 2 \frac{e^{t}\sqrt{1+t^{2}} - e^{t} \frac{1}{2\sqrt{1+t^{2}}} (2t)}{\sqrt{1+t^{2}}^{2}}$$
$$= 2e^{t} \frac{1+t^{2}-t}{(1+t^{2})\sqrt{1+t^{2}}}$$

On étudie le signe du polynôme du second degré $t^2 - t + 1$ qui a pour discriminant $\Delta = 1 - 4 < 0$ Donc pour tout $t \in \mathbb{R}$: $t^2 - t + 1 > 0$ et f'(t) > 0 et f est strictement croissante sur \mathbb{R} .

Etude aux bornes:

$$\operatorname{En} -\infty : f(t) \to 0$$

 $\operatorname{En} + \infty$:

$$f(t) = \frac{2e^t}{\sqrt{t^2(1+1/t^2)}} = \frac{2e^t}{|t|\sqrt{(1+1/t^2)}} = \frac{e^t}{t} \frac{2}{\sqrt{(1+1/t^2)}}$$

 $\to +\infty \quad \text{car } t = o\left(e^t\right)$

(L'étude des branches infinies n'était pas demandé, une seule valeur simple : en 0 où f(0) = 2)

x	$-\infty$		0		$+\infty$
f(t)	0	7	2	7	$+\infty$

2. a) Pour la première inégalité, on étudie les variations de la fonction :

$$g\left(t\right) = 2e^t - t - t^2$$

g est dériavble sur \mathbb{R} et $g'(t) = 2e^t - 1 - 2t$

g'est dériavble sur \mathbb{R} et $g''\left(t\right)=2e^{t}-2=2\left(e^{t}-1\right),$ d'où

t	0		$+\infty$
$e^t - 1$	0	/ +	
g''(t)	0	+	
g'(t)	1	/ +	
g(t)	2	/ +	

Et donc pour tout $t \in [0, +\infty[: 2e^t - t - t^2 > 0]$

On résout la seconde équation : pour $t \geq 0$

 $1+t \ge \sqrt{1+t^2} \Longleftrightarrow (1+t)^2 \ge \sqrt{1+t^2}^2$ car la fonction carré est stritement croissante sur \mathbb{R}^+ et que 1+t et $\sqrt{1+t^2}$ en sont éléments

$$\Longleftrightarrow 1+2t+t^2 \geq 1+t^2 \Longleftrightarrow 2t \geq 0$$
ce qui et vrai sur \mathbb{R}^+

Donc pour tout $t \in [0, +\infty[: 1+t \ge \sqrt{1+t^2}]$

b) On résout à présent f(t) > t pour $t \ge 0$:

$$\frac{2e^t}{\sqrt{1+t^2}} > t \Longleftrightarrow 2e^t > t\sqrt{1+t^2} \dots?$$

On change d'angle d'attaque : $1+t \geq \sqrt{1+t^2}$ donc si $2e^t > t\left(1+t\right)$ alors $2e^t > t\sqrt{1+t^2}$: rédaction

Comme $2e^{t} - t - t^{2} > 0$ alors $2e^{t} > t(1 + t)$

Comme $1+t \ge \sqrt{1+t^2}$ et $t \ge 0$ alors $t(1+t) \ge t\sqrt{1+t^2}$

Et donc $2e^t > t\left(1+t\right) \ge t\sqrt{1+t^2}$ et finalment $\frac{2e^t}{\sqrt{1+t^2}} > t$ ou encore

$$\forall t \in [0, +\infty[, f(t) > t]$$

3. On considère la suite réelle $(u_n)_{n\geq 0}$ définie par $u_0=1$ et, pour tout $n\in\mathbb{N}$:

$$u_{n+1} = f\left(u_n\right)$$

- a) Pour montrer que u_n tend vers $+\infty$, on montre d'abord qu'elle est croissante. Et pour celà, on utilise que f(t) > t pour $t \ge 0$ avec $t = u_n$.
 - Il faut donc montrer d'abord que $\forall n \in \mathbb{N} \quad u_n \geq 0$: Comme f > 0 sur \mathbb{R} , on a $u_{n+1} = f(u_n) > 0$. Donc si $n \geq 1$ alors $u_n \geq 0$ et de plus $u_0 \geq 0$ Donc pour tout entier $n, u_n \geq 0$
 - On peut alors utiliser $u_{n+1} = f(u_n) \ge u_n$ La suite u est donc croissante.

En raisonnant ensuite l'absurde, on montre qu'elle n'est pas majorée par une constante :

Si u est majorée par une constante alors la suite est convergente vers une limite $\ell \geq 0$ (car $u_n \geq 0$)

Et comme f est continue en ℓ , on a alors $f\left(\ell\right)=\ell.$ Or $f\left(\ell\right)>\ell$

Donc la suite u n'est pas majorée.

Elle est donc croissante et non majorée et tend donc vers $+\infty$.

b) Il faut calculer les valeurs successives de u_n et de n jusqu'à ce que $u_n > 10^{-6}$ (le plus petit entier n'est pas n = 1)

```
program prem;
var u:real;n:integer;
begin
    n:=0;u:=1;
    repeat
          u:=2*exp(u)/sqrt(1+sqr(u));n:=n+1;
    until u > 1E-6;
    writeln(n);
end.
```

4. On considère l'application $G: \mathbb{R} \to \mathbb{R}$ définie, pour tout $x \in \mathbb{R}$ par :

$$G\left(x\right) = \int_{-x}^{+x} f\left(t\right) dt$$

a) Comme f est continue sur \mathbb{R} alors G est définie pour tout $x \in \mathbb{R}$. Et pour tout $x \in \mathbb{R}$, $-x \in \mathbb{R}$ et $G(-x) = \int_{x}^{-x} f(t) dt = -\int_{-x}^{+x} f(t) dt = -G(x)$ Donc G est impaire.

Corrigé Fdi002-c Page 2/3

b) Comme f est continue sur $J = \mathbb{R}$, que $x \to x$ et $x \to -x$ sont de classe C^1 sur $I = \mathbb{R}$ à valeur dans $J = \mathbb{R}$, alors G est de classe C^1 sur \mathbb{R} et

$$G'(x) = 1f(x) - -1.f(-x) = f(x) + f(-x) = 2\frac{e^x + e^{-x}}{\sqrt{1+x^2}}$$

- c) Comme on ne sait pas primitiver f, on obtient la limite de G par minoration :
 - Pour tout $t \leq 0$: $f(t) \geq 0$ donc pour x > 0 on a -x < 0 et $\int_{-x}^{0} f(t) dt \geq 0$
 - Pour tout $t \ge 0$: $f(t) \ge t$ donc pour x > 0 on a: $\int_0^{+x} f(t) dt \ge \int_0^{+x} t dt = x^2/2$

Donc pour tout x > 0 on a $G(x) \ge x^2/2$ et par minoration, $G(x) \to +\infty$ quand x tend vers $+\infty$?

d) Comme $G'(x) = 2\frac{e^x + e^{-x}}{\sqrt{1+x^2}}$ est strictement positive sur $\mathbb R$ alors G est strictement croissante sur $\mathbb R$.

En 0 elle est nulle (soit $\int_0^0 f(t) dt = 0$, soit par imparité G(-0) = -G(0) donc 2G(0) = 0 et G(0) = 0) sa dérivée y vaut 4 (pente de la tangente)

En $+\infty$, G tend vers $+\infty$ donc par imparité, G tend vers $-\infty$ en $-\infty$

x	$-\infty$		0		$+\infty$
$G\left(t\right)$	$-\infty$	7	0	/	$+\infty$

Corrigé Fdi002-c Page 3/3