ECRICOME Eco 2012

EXERCICE 1

 $(\mathcal{M}_3(\mathbb{R}), +, \cdot)$ désigne l'espace vectoriel des matrices carrées d'ordre 3 à coefficients réels. Deux matrices A et B de $\mathcal{M}_3(\mathbb{R})$ étant données, on suppose qu'il existe une matrice L appartenant à $\mathcal{M}_3\mathbb{R}$ telle que :

$$L = AL + B$$
.

On définit la suite de matrices $(U_n)_{nIN}$ de $\mathcal{M}_3(\mathbb{R})$ de la manière suivante :

$$\begin{cases} U_0 \in \mathcal{M}_3(\mathbb{R}) \\ \forall n \in \mathbb{N}, \ U_{n+1} = AU_n + B \end{cases}$$

1. Démontrer par récurrence que, pour tout entier naturel n:

$$U_n = L + A^n \left(U_0 - L \right).$$

Dans la suite du problème les matrices A et B sont choisies de telle sorte que :

$$A = \frac{1}{6} \begin{pmatrix} 0 & 3 & 3 \\ -4 & 6 & 4 \\ -2 & 3 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & -1 & -2 \\ 1 & 0 & -1 \\ 2 & -1 & -1 \end{pmatrix}$$

On note:

- Id l'endomorphisme identité de \mathbb{R}^3 ;
- -a l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est la matrice A;
- b l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est la matrice B;
- $\operatorname{Im}(b)$ l'image de l'endomorphisme b;
- Im (Id a) l'image de l'endomorphisme Id -a.
- 2. Prouver que le vecteur u = (x, y, z) appartient à l'image de b si et seulement si

$$-x + y + z = 0$$

puis montrer que:

$$\operatorname{Im}(b) = \operatorname{Im}(\operatorname{Id} - a)$$

3. Montrer que la matrice $P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 1 & 1 & 1 \end{pmatrix}$ peut être considérée comme la matrice de passage

de la base canonique de \mathbb{R}^3 à une base de vecteurs propres de a.

- 4. Écrire la matrice D de l'endomorphisme a ainsi que la matrice B' de l'endomorphisme b dans cette base de vecteurs propres.
- 5. Démontrer que, pour tout entier naturel n,

$$A^n = PD^nP^{-1}$$

6. En écrivant convenablement D^n comme la somme de trois matrices diagonales judicieusement choisies, prouver l'existence de trois matrices E, F, G indépendantes de n telles que pour tout entier naturel n:

$$A^{n} = E + \left(\frac{1}{2}\right)^{n} F + \left(\frac{1}{3}\right)^{n} G.$$

Expliciter uniquement la matrice E sous la forme d'un tableau de nombres.

7. Déterminer par le calcul, une matrice
$$L'$$
 de la forme $\begin{pmatrix} 0 & 0 & 0 \\ 0 & p & q \\ 0 & 0 & r \end{pmatrix}$ telle que :

$$L' = DL' + B'$$

8. Montrer que la matrice $L = PL'P^{-1}$ vérifie :

$$L = AL + B$$
.

- 9. Établir que EL = 0.
- 10. Montrer que chacun des coefficients de la matrice U_n a pour limite, lorsque n tend vers $+\infty$, les coefficients de la matrice $EU_0 + L$.

EXERCICE 2.

Partie I. Étude d'une fonction f.

On considère la fonction définie sur l'ensemble des réels positifs par :

$$\begin{cases} f(x) = \frac{1 - e^{-x}}{x} & \text{si } x > 0 \\ f(0) = 1 \end{cases}$$

- 1. Ecrire le développement limité de f(x) l'ordre 2, au voisinage de 0 En déduire que f est continue sur $[0, +\infty[$.
- 2. Montrer que f est dérivable en 0 et donner la valeur de f'(0).
- 3. Justifier la dérivabilité de f sur l'intervalle $]0,+\infty[$ puis déterminer la fonction φ telle que :

$$\forall x > 0 \quad f'(x) = \frac{\varphi(x)}{x^2}$$

4. Étudier les variations de φ ;. En déduire le tableau de variation f qui sera complété par la limite de f en $+\infty$.

Partie II. Étude d'une suite.

On introduit la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par :

$$\forall n \in \mathbb{N}^* \quad u_n = \int_0^n \frac{e^{-\frac{u}{n}}}{1+u} du$$

1. Démontrer que pour tout entier naturel n non nul :

$$u_n \ge \frac{1}{e} \ln \left(n + 1 \right)$$

Donner la limite de la suite $(u_n)_{n\in\mathbb{N}^*}$.

- 2. Prouver l'existence de l'intégrale $\int_{0}^{1}f\left(x\right) dx^{\prime}.$
- 3. Utiliser un changement de variable affine pour montrer que, pour tout entier naturel n non nul :

$$0 \le \int_0^n \frac{1}{1+u} du - u_n \le \int_0^1 f(x) dx$$

4. Donner alors un équivalent simple de u_n lorsque n tend vers $+\infty$.

EXERCICE 3.

Soit n un entier naturel non nul. Une entreprise dispose d'un lot du n feuilles originales qu'elle a numérotées $l, 2, \dots, n$. Elle photocopie ces n feuilles originales et souhaite que chaque original soit agrafé avec sa copie. L'entreprise programme le photocopieur afin que chaque original soit agrafé avec sa copie. Cependant . suite à un défaut informatique, la photocopieuse a mélangé les originaux et les copies. L'entreprise décide donc de placer les n originaux et les n copies dans une boite. Une personne est alors chargée du travail suivant : elle pioche simultanément et au hasard 2 feuilles dans la boite. S'il s'agit d'un original et de sa copie, elle les agrafe et les sort de la boite. Sinon, elle repose les deux feuilles dans la, boite et elle recommence.

On modélise l'expérience par un espace probabilité (Ω, \mathcal{B}, P) . Soit T_n la variable aléatoire égale au nombre de pioches qui sont nécessaires pour vider la boite lorsque celle-ci contient n originaux et n copies (soit 2n feuilles).

On considère l'événement A_n : « à l'issue de la première pioche, les deux feuilles piochées ne sont pas agrafées » et a_n sa probabilité c'est-à-dire que $a_n = P(A_n)$.

- 1. Calculer a_n .
- 2. Étude de T_2 . On suppose dans cette question que n = 2, c'est-à-dire que la boite contient deux originaux et deux copies.
 - a) Montrer que pour tout entier $k \geq 2$: $P(T_2 = k) = (1 a_2)(a_2)^{k-2}$.
 - b) Justifier que la variable $S_2=T_2-1$ suit une loi géométrique dont on précisera le paramètre. En déduire l'espérance et la variance de T_2 en fonction de a_2
- 3. Étude de T_3 . On suppose dans cette question que n=3, c'est-à-dire que la boite, contient trois originaux et trois copies.
 - a) Calculer P $(T_3 = 2)$ puis P $(T_3 = 3)$ en fonction de a_2 et a_3
 - b) A l'aide du système complet d'événements $(A_3, \overline{A_3})$ démontrer pour tout $k \geq 2$ que :

$$P(T_3 = k + 1) = (1 - a_3) P(T_2 = k) + a_3 P(T_3 = k)$$

c) Montrer que :

$$k \ge 2$$
, $P(T_3 = k) = \frac{(1 - a_2)(1 - a_3)}{a_3 - a_2} \left[(a_3)^{k-2} - (a_2)^{k-2} \right]$.

- d) Calculer $\sum_{k=2}^{+\infty} P(T_3 = k)$.
- e) Prouver que la variable aléatoire $T_3 1$ admet une espérance et calculer $E(T_3 1)$. Donner la valeur de $E(T_3)$ en fonction de a_2 et a_3 .
- f) Établir que la variable aléatoire $T_3(T_3-1)$ admet une espérance et donner sa valeur en fonction de a_2 et a_3 .

En déduire que T_3 admet une variance.

ECRICOME Eco 2012 Page 3/3