Exercice I

Partie I : Un endomorphisme de l'espace vectoriel des matrices symétriques d'ordre 2

- On note
$$A = \begin{pmatrix} 0 & 2 \\ 2 & 3 \end{pmatrix}$$
, $F = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $G = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $H = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

- On note S_2 l'ensemble des matrices carrées symétriques d'ordre 2.

1. On a:
$$AFA = \begin{pmatrix} 0 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix} = 4H$$

$$AGA = \begin{pmatrix} 0 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 4 \\ 4 & 12 \end{pmatrix} = 4G + 12H$$

$$AHA = \begin{pmatrix} 0 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 6 & 9 \end{pmatrix} = 4F + 6G + 9H$$

2. Les matrices symétriques d'ordre 2 sont celles du type $\begin{pmatrix} a & b \\ b & c \end{pmatrix} = aF + bG + cH$ avec a, b, c réels.

donc $S_2 = \text{Vect}(F, G, H)$ est une sous espace vectoriel de $\mathcal{M}_2(\mathbb{R})$

(F, G, H) en est une famille génératrice.

Si aF + bG + cH = 0 alors a = b = c = 0 donc cette famille est libre.

Conclusion: (F, G, H) est une base de S_2 et donc dim $(S_2) = 3$

On note u l'application qui a toute matrice S de S_2 associe la matrice u(S) = ASA

3. a) On réexploite l'idée du 2. :

Soit
$$S = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \in \mathcal{S}_2$$
 alors $u(S) = \begin{pmatrix} 0 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 4c & 4b + 6c \\ 4b + 6c & 4a + 12b + 9c \end{pmatrix}$ qui est bien symétrique.

Conclusion: $\forall S \in \mathcal{S}_2, \ u(S) \in \mathcal{S}_2$

b) u est donc une application de S_2 dans S_2 et pour $S, T \in S_2$ et $x, y \in \mathbb{R}$:

$$u(xS + yT) = A(xS + yT)A$$
$$= xASA + yATA$$
$$= xu(S) + yu(T)$$

Conclusion : u est une endomorphisme de S_2

c) On remarque que AFA = 4H = 0F + 0G + 4H donc $u\left(F\right)$ a pour coordonnées (0,0,4) dans la base (F,G,H)

De même AGA = 4G + 12H et AHA = 4F + 6G + 9H

Donc la matrice de u dans la base $\mathcal{B} = (F, G, H)$ est $\begin{pmatrix} 0 & 0 & 4 \\ 0 & 4 & 6 \\ 4 & 12 & 9 \end{pmatrix} = M$ (rassurant)

Conclusion : bien calibré

Partie II: réduction d'une matrice carrée d'ordre 3

On note
$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $M = \begin{pmatrix} 0 & 0 & 4 \\ 0 & 4 & 6 \\ 4 & 12 & 9 \end{pmatrix}$, $D = \begin{pmatrix} -4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 16 \end{pmatrix}$

1. Soit $(x, y, z) \in \mathbb{R}^3$

$$(M+4I)\begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \Longleftrightarrow \begin{cases} 4x + 4z = 0 \\ 8y + 6z = 0 \\ 4x + 12y + 13z = 0 \end{cases} \Longleftrightarrow \begin{cases} x = -z \\ y = -\frac{3}{4}z \\ 0z = 0 \end{cases}$$

(0,0,0) n'est pas la seule solution donc -4 est valeur propre et le sous espace associé est $\operatorname{Vect}\left(-1,-\frac{3}{4},1\right)$

$$(M-I)\begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \Longleftrightarrow \left\{ \begin{array}{c} -x+4z=0 \\ 3y+6z=0 \\ 4x+12y+8z=0 \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{c} x=4z \\ y=-2z \\ 0z=0 \end{array} \right.$$

donc 1 est valeur propre et le sous espace associé est Vect(4, -2, 1)

$$(M-16I)\begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \Longleftrightarrow \begin{cases} -16x + 4z = 0 \\ -12y + 6z = 0 \\ 4x + 12y - 7z = 0 \end{cases} \Longleftrightarrow \begin{cases} x = \frac{1}{4}z \\ y = \frac{1}{2}z \\ 0z = 0 \end{cases}$$

donc 16 est valeur propre et le sous espace associé est Vect $(\frac{1}{4}, \frac{1}{2}, 1)$

Comme M est une matrice d'ordre 3 qui possède 2 valeurs propres distinctes

Conclusion: M est donc diagonalisable

2. $-4\left(-1, -\frac{3}{4}, 1\right) = (4, 3, -4)$ est associé à -4

(4, -2, 1) est associé à 1

 $4\left(\frac{1}{4},\frac{1}{2},1\right)=(1,2,4)$ est associé à 16

La juxtaposition de ces 3 vecteurs propres ((4,3,-4),(4,-2,1),(1,2,4)) associé aux 3 valeurs propres forme donc une base de vecteurs propres.

Et avec
$$P = \begin{pmatrix} 4 & 4 & 1 \\ 3 & -2 & 2 \\ -4 & 1 & 4 \end{pmatrix}$$
 on a $M = PDP^{-1}$

3. On a $D + 4I = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 20 \end{pmatrix}$, $D - I = \begin{pmatrix} -5 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 15 \end{pmatrix}$ et $D - 16I = \begin{pmatrix} -20 & 0 & 0 \\ 0 & -17 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Donc (D+4I)(D-I)(D-16I) = 0

4. On développe

$$(D+4I) (D-I) (D-16I) = (D^2 + 3D - 4I) (D-16I)$$
$$= D^3 - 13D^2 - 52D + 64I$$
$$= 0$$

Donc
$$D^3 = 13D^2 + 52D - 64I$$
 et $PD^3P^{-1} = P(13D^2 + 52D - 64I)P^{-1}$
Conclusion : $M^3 = 13M^2 + 52M - 16I$

5. L'application linéaire associée à M dans la base (F,G,H) est u^3

Celle associée à $13M^2 + 52M - 16I$ est $13u^2 + 52u - 16e$ et comme ces deux matrices sont égales, les applications linéaires associées le sont aussi.

Conclusion: $u^3 = 13u^2 + 52u - 16$

Bilan: trouver la bonne base demande de la finesse.

Exercice 2

1. On note f définie pour tout x réel par , $f(x) = x - \ln(1 + x^2)$ et $\mathcal C$ sa courbe représentative.

Partie I : Etude et tracé de \mathcal{C}

1. a) Comme $1 + x^2 > 0$ pour tout x réel, f est dérivable sur \mathbb{R}

$$f'(x) = 1 - \frac{2x}{1+x^2} = \frac{1+x^2-2x}{1+x^2} = \frac{(x-1)^2}{1+x^2} > 0$$

 $\operatorname{sur} \mathbb{R}^*$

b) Donc f est strictement croissante sur \mathbb{R} .

c) f' est dérivable sur \mathbb{R} et (en partant de l'expression développée)

$$f''(x) = -2\frac{1+x^2-2x^2}{(1+x^2)^2} = -2\frac{1-x^2}{(1+x^2)^2}$$

2. En $-\infty$: $f(x) = x - \ln(1 + x^2) \rightarrow +\infty$ En $+\infty$:

$$f(x) = x - \ln(1 + x^2)$$

$$= x \left[1 - 2\frac{\ln(x)}{x} - \frac{\ln(1 + 1/x^2)}{x} \right]$$

$$\Rightarrow +\infty$$

3. A partir de cette factorisation

en $+\infty$:

$$\frac{f(x)}{x} = 1 - 2\frac{\ln(x)}{x} - \frac{\ln(1 + 1/x^2)}{x} \to 1$$

et $f(x) - 1x = -\ln(1 + x^2) \to -\infty$

Conclusion: Il y a une branche parabolique de direction y=x en $+\infty$

 $\operatorname{En} -\infty$:

$$\frac{f(x)}{x} = 1 - \frac{\ln(1+x^2)}{x} = 1 - \frac{\ln(x^2(1+1/x^2))}{x}$$
$$= 1 - 2\frac{\ln(-x)}{x} - \frac{\ln(1+1/x^2)}{x}$$
$$= 1 - 2\frac{\ln(-x)}{-x} - \frac{\ln(1+1/x^2)}{x}$$
$$\to 1$$

 $\operatorname{car} \ln (X) = o(X) \text{ quand } X = -x \to +\infty f$

Donc $f(x)/x \to 1$ et $f(x) - x = -\ln(1 + x^2) \to -\infty$

Conclusion: Il y a une branche parabolique de direction y = x en $+\infty$

4. Comme f est deux fois dérivable, $f''(x) = 2\frac{x^2 - 1}{(1 + x^2)^2}$ on a donc

								. `
x	$-\infty$		-1		1		$+\infty$	
$x^2 - 1$		+	0	_	0	+		at
f''(x)		+	0	_	0	+		et
f'(x)		7		\		7		

Conclusion: C a deux points d'inflexion en $(-1, -1 - \ln(2))$ et en $(1, 1 - \ln(2))$

5. Il convient de reporter les points d'inflexion avec leurs tangentes de pente : f'(-1) = 2 et f'(1) = 0

Le point d'abscisse 0 n'était pas dans l'étude, mais demandé. (0,0) et pente f'(0) = 1/2

6. On a

$$\int_{0}^{1} x f(x) dx = \int_{0}^{1} x (x - \ln(1 + x^{2})) dx$$
$$= \int_{0}^{1} x^{2} dx - \int_{0}^{1} x \ln(1 + x^{2}) dx$$

On utilise le changement de variable $t=1+x^2$ aux bornes : $x=0 \iff t=1$ et $x=1 \iff t=2$ Le sens simple $x=\sqrt{t-1}$ du changement de variable (l'ancienne en fonction de la nouvelle) n'est pas dérivable en t=1

Donc directement : dt = 2xdx

$$\int_0^1 x \ln(1+x^2) dx = \int_0^1 2x \frac{\ln(1+x^2)}{2} dx = \int_1^2 \frac{\ln(t)}{2} dt$$
$$= \frac{1}{2} [t \ln(t) - t]_1^2 = \frac{1}{2} [2 \ln(2) - 2 + 1]$$
$$= \ln(2) - \frac{1}{2}$$

Donc

$$\int_0^1 x^2 dx = \left[\frac{x^3}{3}\right]_0^1 = \frac{1}{3}$$

Conclusion: $\int_{0}^{1} x f(x) dx = \frac{5}{6} - \ln(2)$

Partie II : Etude d'une suite et d'une série associée à f

 $u_0 = 1 \text{ et } \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n)$

1. On a pour tout $x \in \mathbb{R}$: $f(x) - x = -\ln(1 + x^2) \le 0$ car $1 + x^2 \ge 1$ En particulier, $f(u_n) \le u_n$

Conclusion : la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante

(Comme f est croissante sur \mathbb{R} , une démonstration par récurrence fonctionne très bien)

2. On prouve que pour tout $n \in \mathbb{N} : u_n \ge 0$:

$$u_0 = 1 \ge 0.$$

Soit $n \in \mathbb{N}$ tel que $u_n \ge 0$ alors $f(u_n) \ge f(0) = 0$ donc $u_{n+1} \ge 0$ et par récurrence

Conclusion: pour tout $n \in \mathbb{N} : u_n \ge 0$

La suite u est décroissante et minorée par 0, elle converge donc vers une limite $\ell \geq 0$ f est continue sur \mathbb{R} donc en ℓ qui est donc un point fixe. Et $f(\ell) = \ell$

Or
$$f(x) = x \iff \ln(1+x^2) = 0 \iff x^2 = 0 \iff x = 0$$

Conclusion : la suite converge vers 0

3. On calcul les valeurs de u_n et de n jusqu'à ce que u_n soit inférieur à $10^{-3}\,$

begin

u :=1; n :=0;

4. a) On étudie la différence $g(x) = f(x) - x + \frac{1}{2}x^2$ g est dérivable sur [0,1] et

$$g'(x) = -\frac{2x}{1+x^2} + x = \frac{x(x^2-1)}{x^2+1}$$

\overline{x}	0		1	
g'(x)	0	_	0	et donc $g(x) \le 0$ e
g(x)	0	\ _		

Conclusion: $\forall x \in [0, 1] : f(x) \le x - \frac{1}{2}x^2$

b) On l'applique avec u_n , mais il faut au préalable vérifier l'hypothèse Comme $u_0=1$ et que la suite est décroissante minorée par 0 alors, pour tout $n \in \mathbb{N} : u_n \in [0,1]$:

 $u_{n+1} = f(u_n) \le u_n - \frac{1}{2}u_n^2$

Conclusion: pour tout $n \in \mathbb{N}$: $u_n^2 \le 2(u_n - u_{n+1})$

c) La série $\sum u_n^2$ étant à termes positifs, on étudie la convergence de la série majorante : $\sum_{n=0}^{N} u_n - u_{n+1} = u_0 - u_N \to u_0 \text{car } u_N \to 0$ Donc la série $\sum_{n \in \mathbb{N}} u_n - u_{n+1}$ est convergente et par majoration de termes positifs, Conclusion : La série $\sum_{n>0} u_n^2$ converge

Bilan: brodé sur un schéma classique, il demande d'être autonome.

Parti III Etude dune fonction de deux variables réelles associée à f

$$F(x,y) = f(x+y) - f(x) - f(y)$$

Donc

1. Comme $(x,y) \to x+y$ est C^1 à valeurs dans $\mathbb R$ et que f est C^1 sur $\mathbb R$ alors F est C^1 sur $\mathbb R^2$ comme composée et somme de fonctions C^1

$$\frac{\partial F}{\partial x}(x,y) = f'(x+y) - f'(x)$$
$$\frac{\partial F}{\partial y}(x,y) = f'(x+y) - f'(y)$$

2. On a, pour tout $x \in \mathbb{R}$: $f'(x) = 1 - \frac{2x}{1 + x^2}$ donc

$$\begin{cases} f'(x) = f'(y) \\ f'(x+y) = f'(x) \end{cases} \iff \begin{cases} \frac{2x}{1+x^2} = \frac{2y}{1+y^2} \\ \frac{2(x+y)}{1+(x+y)^2} = \frac{2x}{1+x^2} \end{cases},$$

$$\iff \begin{cases} x\left(1+y^2\right) = y\left(1+x^2\right) \\ (x+y)\left(1+x^2\right) = x\left(1+(x+y)^2\right) \end{cases} \text{ et là, pour la première ligne, il faut se dire que si } x = y, \text{ on a une solution, et donc chercher à factoriser par } (x-y) \\ \iff \begin{cases} x+xy^2-y-yx^2 = (x-y)\left(1-xy\right) = 0 \\ (x+y)\left(1+x^2\right) = x\left(1+(x+y)^2\right) \end{cases}$$

$$\iff \begin{cases} x + xy^2 - y - yx^2 = (x - y)(1 - xy) = 0 \\ (x + y)(1 + x^2) = x(1 + (x + y)^2) \end{cases}$$

Donc ou bien
$$\begin{cases}
 x = y \\
 2y(1+y^2) = y(1+4y^2)
\end{cases} \iff \begin{cases}
 x = y \\
 y(1-2y^2) = 0
\end{cases}$$
dont les solutions sont $(0,0)$, $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
et $\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$

ou bien $y \neq 0$ et

$$\begin{cases} x = 1/y \\ \left(\frac{1}{y} + y\right) \left(1 + \frac{1}{y^2}\right) = \frac{1}{y} \left(1 + \left(\frac{1}{y} + y\right)^2\right) : (E) \end{cases}$$

$$(E) \iff \frac{1}{y^3} + \frac{2}{y} + y = \frac{1}{y} \left(\frac{1}{y^2} + y^2 + 3 \right)$$
$$\iff \frac{2}{y} = \frac{3}{y}$$

qui n'a pas de solutions.

Conclusion: Les solutions sont
$$(0,0)$$
, $\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$ et $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$

$$(x,y)$$
 est un point critique \iff
$$\begin{cases} \frac{\partial F}{\partial x}(x,y) = 0 \\ \frac{\partial F}{\partial y}(x,y) = 0 \end{cases} \iff \begin{cases} f'(x+y) - f'(x) = 0 \\ f'(x+y) - f'(y) = 0 \end{cases}$$

$$\iff \left\{ \begin{array}{l} f'\left(x\right) = f'\left(y\right) \\ f'\left(x+y\right) = f'\left(x\right) \end{array} \right.$$

Conclusion : Les points critiques de
$$F$$
 sont $(0,0)$, $\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$ et $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$

3. F est de classe C^2 sur l'ouvert \mathbb{R}^2

$$r = \frac{\partial^2 F}{\partial x^2}(x, y) = f''(x + y) - f''(x)$$
$$s = \frac{\partial^2 F}{\partial x \partial y}(x, y) = f''(x + y)$$
$$t = \frac{\partial^2 F}{\partial y^2}(x, y) = f''(x + y) - f''(y)$$

avec
$$f''(x) = 2 \frac{x^2 - 1}{(1 + x^2)^2}$$

- en
$$(0,0): r=0: s=-2: t=0$$
 donc $rt-s^2<0$ et il n'y a pas d'extremum local en $(0,0)$

$$-\operatorname{en}\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) : r = 2\frac{2-1}{\left(1+2\right)^2} - 2\frac{\frac{1}{2}-1}{\left(1+\frac{1}{2}\right)^2} = 2\left(\frac{1}{9} + \frac{2}{9}\right) = \frac{2}{3} = t \text{ et } s = \frac{2}{9}$$

donc $rt - s^2 = \frac{4}{9} - \frac{4}{81} > 0$ et F a un extremum local en $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ qui est un minimum car

- Comme tous les termes sont au carré, on a le même résultat en $\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$

F a un extremum local en $\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$ qui est un minimum.

Bilan: calculs infaisables pour les candidats, dans le temps imparti

Exercice 3

Partie I

1.
$$X_1 \hookrightarrow \mathcal{G}(p) \text{ donc } X_1(\Omega) = \mathbb{N}^* \text{ et } P(X_1 = k) = q^{k-1}p \text{ et } E(X_1) = \frac{1}{p} \text{ et } V(X_1) = \frac{q}{p^2}$$

2.
$$(\Delta = 0) = (X_1 = X_2) = \bigcup_{k=1}^{+\infty} (X_1 = k \cap X_2 = k)$$
 (incompatibles) donc

$$P(X_{1} = X_{2}) = \sum_{k=1}^{+\infty} P(X_{1} = k) P(X_{2} = k) \text{ indépendants}$$

$$= \sum_{k=1}^{+\infty} q^{2(k-1)} p^{2} \text{ réindexé } h = k - 1$$

$$= p^{2} \sum_{k=0}^{+\infty} q^{2k} \text{ avec } |q^{2}| < 1$$

$$= \frac{p^{2}}{1 - q^{2}} = \frac{p^{2}}{(1 - q)(1 + q)}$$

Conclusion:
$$P(X_1 = X_2) = \frac{p}{1+q}$$

- 3. Soit $n \in \mathbb{N}^*$
 - a) $(X_1 X_2 = n) = \bigcup_k (X_2 = k \cap X_1 = n + k)$ avec comme contraintes $k \in \mathbb{N}^*$ et $n + k \in \mathbb{N}^*$ soit

$$(X_1 - X_2 = n) = \bigcup_{k=1}^{+\infty} (X_2 = k \cap X_1 = n + k) \text{ donc}$$
$$P(X_1 - X_2 = n) = \sum_{k=1}^{+\infty} P(X_2 = k) P(X_1 = n + k)$$

b) Somme que l'on calcule :

$$P(X_1 - X_2 = n) = \sum_{k=1}^{+\infty} q^{k-1} p q^{n+k-1} p = p^2 q^n \sum_{k=1}^{+\infty} q^{2(k-1)}$$
$$= p^2 q^n \frac{1}{1 - q^2} \operatorname{car} |q^2| < 1$$
$$= \frac{p^2 q^n}{(1 - q)(1 + q)} = \frac{p q^n}{1 + q}$$

Or $|X_1 - X_2| = n \iff X_1 - X_2 = n \text{ ou } X_1 - X_2 = -n \text{ (incompatibles)}$

avec $X_1 - X_2 = -n \iff X_2 - X_1 = n$ qui, par symétrie des rôles de X_1 et X_2 , aura donc la même probabilité

Finalement P
$$(|X_1 - X_2| = n) = P(X_1 - X_2 = n) + P(X_1 - X_2 = -n)$$

Conclusion: $P(\Delta = n) = 2\frac{pq^n}{1+q}$

4. a) La série $\sum_{n\in\mathbb{N}} nP(\Delta = n)$ est à termes positifs donc l'absolue convergence équivaut à la convergence simple.

$$\sum_{n=0}^{N} n P\left(\Delta = n\right) = 0 + \sum_{n=1}^{N} 2n \frac{pq^n}{1+q} = 2 \frac{p}{1+q} \sum_{n=1}^{N} nq^n$$

$$\to 2 \frac{p}{1+q} \frac{q}{(1-q)^2} = 2 \frac{1}{1+q} \frac{q}{(1-q)}$$

Conclusion : Donc Δ a une espérance et $E\left(\Delta\right)=2\frac{q}{1-q^2}$

b) On a:

$$E((X_1 - X_2)^2) = E(X_1^2 - 2X_1X_2 + X_2^2)$$

$$= E(X_1^2) - 2E(X_1X_2) + E(X_2^2) \text{ indépendantes}$$

$$= E(X_1^2) - 2E(X_1)E(X_2) + E(X_2^2)$$

et comme X_1 et X_2 ont mêmes lois, elles ont même espérance donc

$$E((X_1 - X_2)^2) = 2[E(X_1^2) - E(X_1)]$$

= $2V(X_1)$

de plus $\Delta^2 = |X_1 - X_2|^2 = (X_1 - X_2)^2$ donc Δ^2 a une espérance et $E(\Delta^2) = 2V(X_1)$ Δ a donc une variance et

$$V(\Delta) = E(\Delta^{2}) - E(\Delta)^{2}$$

$$= 2\frac{q}{p^{2}} - \left(2\frac{q}{1 - q^{2}}\right)^{2} = 2\frac{q}{p^{2}} - 4\frac{q^{2}}{p^{2}(1 + q)^{2}}$$

$$= 2q\frac{(1 + q)^{2} - 2q}{p^{2}(1 + q)^{2}} = 2q\frac{1 + 2q + q^{2} - 2q}{p^{2}(1 + q)^{2}}$$

$$= 2q\frac{1 + q^{2}}{p^{2}(1 + q)^{2}}$$

Conclusion: $V(\Delta) = 2q \frac{1+q^2}{p^2(1+q)^2}$

5. l'événement

$$A = [\min(X_1, X_2) + X_3 > \max(X_1, X_2)]$$

= $[X_3 > \max(X_1, X_2) - \min(X_1, X_2)]$

Si $X_1 \ge X_2$ alors $\max(X_1, X_2) - \min(X_1, X_2) = X_1 - X_2 = |X_1 - X_2| = \Delta$ et si $X_1 \le X_2$ alors $\max(X_1, X_2) - \min(X_1, X_2) = X_2 - X_1 = |X_1 - X_2| = \Delta$ Conclusion: Finalement $A = [X_3 > \Delta]$

6. a) On décompose : $[X_3 > \Delta] = \bigcup_{k=0}^{+\infty} (\Delta = k \cap X_3 > k)$ incompatibles donc

$$P(X_3 > \Delta) = \sum_{k=0}^{+\infty} P(\Delta = k) P(X_3 > k)$$

car Δ défini à partir de X_1 et X_2 est indépendant de X_3

b) Avec, pour tout $k \in \mathbb{N}$: $P(X_3 > k) = q^k$ (on n'a que des échecs jusqu'à k) on a donc

$$P(A) = P(\Delta = 0) P(X_3 > 0) + \sum_{k=1}^{+\infty} P(\Delta = k) P(X_3 > k)$$

$$= \frac{p}{1+q} 1 + \sum_{k=1}^{+\infty} 2 \frac{pq^k}{1+q} q^k$$

$$= \frac{p}{1+q} + 2 \frac{p}{1+q} \sum_{k=1}^{+\infty} (q^2)^k$$

$$= \frac{p}{1+q} \left[1 + 2q^2 \frac{1}{1-q^2} \right] \text{ car } |q^2| < 1$$

$$= \frac{p}{1+q} \left[\frac{1-q^2+2q^2}{1-q^2} \right]$$

$$= \frac{1+q^2}{(1+q)^2}$$

Bilan : calculs très lourds et largement répétitifs, basé sur les mêmes décompositions

Partie II

 $X \hookrightarrow \mathcal{G}(p)$ et $Y \hookrightarrow \varepsilon(\lambda)$ et X et Y indépendantes.

- 1. Une densité de Y est $f(x) = \begin{cases} 0 & \text{si } x < 0 \\ \lambda e^{-\lambda x} & \text{si } x \ge 0 \end{cases}$ avec $E(Y) = \frac{1}{\lambda}$ et $V(\lambda) = \frac{1}{\lambda^2}$
- 2. On définit $Z = \frac{Y}{X}$
 - a) $(X=k)_{k\in\mathbb{N}^*}$ est un système complet d'événements donc

$$P(Z \ge t) = \sum_{k=1}^{+\infty} P\left(X = k \cap \frac{Y}{X} \ge t\right)$$
$$= \sum_{k=1}^{+\infty} P(X = k \cap Y \ge tk) \text{ car } k > 0$$
$$= \sum_{k=1}^{+\infty} P(X = k) P(Y \ge tk) \text{ indépendance}$$

b) Or $P(Y \ge t) = e^{-\lambda t}$ pour tout $t \ge 0$ donc, pour tout $t \in [0, +\infty[$

$$P(Z \ge t) = \sum_{k=1}^{+\infty} q^{k-1} p \cdot e^{-\lambda t k}$$

$$= \frac{p}{q} \sum_{k=1}^{+\infty} (q e^{-\lambda t})^k$$

$$= \frac{p}{q} q e^{-\lambda t} \frac{1}{1 - q e^{-\lambda t}} \operatorname{car} |q e^{-\lambda t}| < 1$$

$$= \frac{p e^{-\lambda t}}{1 - q e^{-\lambda t}}$$

Conclusion:
$$P(Z \ge t) = \frac{pe^{-\lambda t}}{1 - qe^{-\lambda t}}$$

c) la fonction
$$G$$
 de répartition de Z est donc donnée par $G(t) = 1 - \frac{pe^{-\lambda t}}{1 - qe^{-\lambda t}}$ si $t \ge 0$

Erreur: merci à Sebastien Guffroy.

On a $G(t) = P(Z \le t) = 1 - P(Z > t)$ alors que c'est $P(Z \ge t)$ qui a été calculée.... Et ce n'est qu'une fois que l'on sait que Z est à densité que l'on peut affirmer l'égalité de ces deux probabiltés.

Or P
$$(X = k \cap Y = tk)$$
 = P $(X = k)$ P $(Y = tk)$ = 0 donc (probabilités totales) P $(Z = t)$ = 0 et P $(Z \ge t)$ = P $(Z > t)$

Et comme
$$P(Y < 0) = 0$$
 alors $P(Z < 0) = 0$ et $G(t) = 0$ si $t < 0$

La fonction G est donc continue sur $]-\infty,0[$ et sur $[0,+\infty[$ (quotient de fonctions continues car $1-qe^{-\lambda t}\neq 0$)

En
$$t < 0$$
: $G(t) = 0 \rightarrow 0$ et $G(0) = 1 - \frac{p}{1 - q} = 0$ donc G est continue en 0^-

Donc G est continue sur \mathbb{R}

Elle est de plus C^1 sur \mathbb{R}^*

Conclusion: Z est à densité

Pour t > 0:

$$G'(t) = -p \frac{-\lambda e^{-\lambda t} \left(1 - q e^{-\lambda t}\right) - \lambda q e^{-\lambda t} e^{-\lambda t}}{\left(1 - q e^{-\lambda t}\right)^2}$$
$$= \lambda e^{-\lambda t} p \frac{1 - q e^{-\lambda t} + q e^{-\lambda t}}{\left(1 - q e^{-\lambda t}\right)^2}$$
$$= \frac{\lambda e^{-\lambda t} p}{\left(1 - q e^{-\lambda t}\right)^2}$$

Une densité de
$$Z$$
 est $g\left(t\right)=G'\left(t\right)=\left\{ \begin{array}{cc} 0 & \text{si } t<0\\ \frac{\lambda e^{-\lambda t}p}{\left(1-qe^{-\lambda t}\right)^{2}} & \text{si } t>0 \end{array} \right.$

Bilan : revient à de grands classiques